

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T930(E)(A6)T
AUGUST EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N1

(16030121)

6 August 2015 (Y-Paper) 13:00–16:00

REQUIREMENT: Graph paper

Scientific calculators may be used.

This question paper consists of 7 pages and 1 formula sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N1 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Round answers off to three decimal numbers (where applicable).
- 5. Write neatly and legibly.

1.1 1.1.1 250 km /h equals ... m/s.

(2)

1.1.2 The reciprocal of 20 is ...

(1)

1.1.3 Express 370 mm as a percentage of 1,225 m.

(2)

- 1.2 Given: $7x^{-3} 4x 7$
 - 1.2.1 ... is the exponent of x.
 - 1.2.2 7 is the ... of x^{-3}
 - 1.2.3 ... is the variable.
 - 1.2.4 ... is the constant term.
 - 1.2.5 The number of terms is ...

(5) **[10]**

QUESTION 2

2.1 Simplify the following by only making use of exponential laws:

$$5(a^0b^0)^8 \times \sqrt[5]{\frac{243a^{15}}{a^5}} \tag{4}$$

2.2 Subtract 14a - 24b + 8c from 12b - 4a - 10c.

(3)

2.3 Simplify: $8a^6 \times 4a^2 \div 16a^{-4}$

(3)

2.4 Divide $d^3 + 12d^2 + 14d + 5$ by d + 1.

Then indicate the quotient and remainder.

(7)

2.5 Remove the brackets and simplify the following:

$$(y-3)(y^2-3y-10)$$
 (5)

[22]

3.1 Show the prime factors of each of the following expressions:

 $12a^3bc$

 $30a^2bc$

 $81ab^2c$

Now determine the highest common factor (HCF) and the lowest common multiple (LCM) of the expressions.

(7)

Simplify the following logarithms without the use of a calculator. 3.2

$$\log_5 25 - 3\log_{10} 100 - \log_3 9 + \log_2 32$$

(5)

3.3 Simplify the fraction:

$$\frac{4}{3a} + \frac{1}{2b^2} - \frac{8}{5ab}$$

(4)

3.4 Simplify the following:

$$\frac{xy - x^2y^2}{xy} \div \frac{4 - 4xy}{20}$$

(4) [20]

QUESTION 4

4.1 Solve for \hat{x} :

$$11 + 5x + 5 = 6(10 - x) \tag{4}$$

4.2The sum of THREE successive uneven numbers is 21. Determine the THREE numbers?

Let the first number be x. (5)

4.3 $V = \frac{1}{2}\pi r^2 h$ is the formula used to calculate the volume of a cone. Manipulate the formula to make r the subject of the formula. (3)

Calculate the value of r in QUESTION 4.3 if V = 9 and h = 5. 4.4 (2)[14]

Sketch the graph [(x; y) (y = 2x + 1)] by using a table of values. Use values of x ranging from -2 to 1 Use a scale of 1 cm = 1 unit on both axis. Indicate the x and y axis.

(6)

5.2 Give the name of the graph you have sketched in QUESTION 5.1.

(1)

5.3 Given: The graph of y = mx + c

- 5.3.1 Give the coordinate of the y-intercept of the graph.
- 5.3.2 Give the slope of the graph,
- 5.3.3 Does this graph have a positive of a negative slope?

(3 x 1) (3)

[10]

QUESTION 6

6.1 Determine the size of the interior angle x if the exterior angle $\hat{C} = 130^{\circ}$.

(2)

(4)

In the given figure below $\hat{A} = 90^{\circ}$; AE = 22.5 cm; EF = 33 cm.

- 6.2.1 Calculate the length of side AF.
- 6.2.2 Give the value of $(\cos \theta)(\sin \theta)$. (3)
- Prove that $\sqrt{2} \cdot \cos 45^{\circ} (\sin 60^{\circ})^2 = \frac{3}{4}$ by making use of special angles. Do NOT use a calculator.

- 7.1 A floor has to be covered with tiles.
 - 7.1.1 Calculate the area in metres of a tile with dimensions $415 \text{ mm} \times 390 \text{ mm}$.
 - 7.1.2 Calculate the area of the floor measuring 4,5 m by 5,5 m.
 - 7.1.3 Hence, calculate how many tiles you will need to tile the floor,

3 x 2) (6)

7.2 The price of Sasko bread is R7,80c and it is increased by 8%. Calculate the new price.

(3)

7.3 Calculate the area of the following:

(2) [11]

TOTAL: 100

MATHEMATICS N1

FORMULA SHEET

This sheet must accompany the question paper.

Rectangle: Perimeter =
$$2(l + b)$$

Area = $l \times b$

Square: Perimeter =
$$4a$$

Area = a^2

Triangle: Perimeter =
$$a + b + c$$

Area = $\frac{1}{2}b \times h$

Rectangular prism: Volume =
$$l \times b \times h$$

Right triangular prism:
Volume =
$$\frac{1}{2}b \times h \times l$$

Cube: Volume =
$$a^3$$

Right pyramid:
Volume =
$$\frac{1}{3}$$
(base area × h)

Area =
$$\frac{\pi}{4}$$
 (major axis × minor axis)

Circle: Circumference =
$$\pi D$$
 or $2\pi r$

Area =
$$\frac{\pi D^2}{4}$$
 or πr^2

Cylinder: Volume =
$$\frac{\pi D^2}{4} \times h$$
 or $\pi r^2 h$

Cone: Volume =
$$\frac{\pi D^2}{4} \times \frac{h}{3}$$
 or $\frac{\pi r^2 h}{3}$

Annulus:
$$A = \pi (R^2 - r^2)$$

The right-angled triangle:

The theorem of Pythagoras: $c^2 = a^2 + b^2$

$$c^2 = a^2 + b^2$$

Ratios of angle θ :

$$\sin\theta = \frac{a}{c}$$
 $\cos\theta = \frac{b}{c}$ $\tan\theta = \frac{a}{b}$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{L}$$

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE AUGUST EXAMINATION MATHEMATICS N1

6 AUGUST 2015

This marking guideline consists of 7 pages.

- (1) Do not allocate marks for QUESTION 5.3.3 (1mark) and 6.3 (4 marks)
- (2) The total (100) to be reduced by 5 marks to 95 for all candidates
- (3) Mark all candidates out of a total of 95 marks
- (4) Convert the mark achieved out of 95 to a percentage
- (5) Record the percentage achieved on the mark sheet

Question paper to be marked out of 95 instead of 100

MATHEMATICS N1

QUESTION 1

1.1 1.1.1 $69,444 \text{ m/s} \checkmark \checkmark$ (2)

 $\frac{1}{20} \checkmark \tag{1}$

1.1.3 $30,204\% \checkmark \checkmark$ (2)

1.2 1.2.1 1; -3 \checkmark any one exponent

1.2.2 Coefficient ✓

1.2.3 x ✓

1.2.4 -7 ✓

1.2.5 3 🗸

 (5×1) (5)

[10]

(4)

QUESTION 2

2.1 $5(a^{0}b^{0})^{8} \times \sqrt[5]{\frac{243a^{15}}{a^{5}}}$ $\sqrt{(3^{5}a^{15-5})^{\frac{1}{5}}} \checkmark$ $= 5 \times 3a^{2} \checkmark$

OR

 $=15a^{2}$

 $\begin{array}{l} -4a + 12b - 10c \\ (-)14a - 24b + 8c \\ \hline -18a + 36b - 18c \end{array}$ (ONE mark per term)

2.3 $8a^{6} \times 4a^{2} \div 16a^{-4}$ = $32a^{8} \div 16a^{-4} \checkmark$ = $2a^{8-(-)4} \checkmark$ = $2a^{12} \checkmark$ (3)

2.4
$$d^{2} + 11d + 3 \checkmark \checkmark \checkmark$$
 (ONE mark per term)
$$d + 1 = d^{3} + 12d^{2} + 14d + 5$$

$$d^{3} + d^{2} \checkmark$$

$$11d^{2} + 14d$$

$$11d^{2} + 11d$$

$$3d + 5$$

$$3d + 3 \checkmark$$

Quotient: $(d^2 + 11d + 3)$ Remainder: 2 (7)

2.5
$$(y-3)(y^2-3y-10)$$

= $y^3 - 3y^2 - 10y - 3y^2 + 9y + 30$ (1st 3 correct terms $\checkmark \checkmark$; last 3 correct terms $\checkmark \checkmark$)
= $y^3 - 6y^2 - y + 30 \checkmark$ (5)

QUESTION 3

3.1
$$12a^{3}bc = 3 \times 2^{2} \times a^{3}bc$$

$$30a^{2}bc = 2 \times 3 \times 5 \times a^{2}bc$$

$$81abc = 3^{4}ab^{2}c$$
✓ (ONE mark per term)

 $LCM = 3^4 \times 2^2 \times 5$ = $1620a^3b^2c$ (ONE mark for the value, one mark for the variables)

$$HCF = 3abc \checkmark \checkmark$$
 (ONE mark for the value, one mark for the variables) (7)

3.2
$$\log_5 25 - 3\log_{10} 100 - \log_3 9 + \log_2 32$$

$$= \log_5 5^2 - 3\log_{10} 10^2 - \log_3 3^2 + \log_2 2^5 \checkmark \checkmark$$

$$= 2(1) - 3(2)(1) - 2(1) + 5 \checkmark \checkmark$$

$$= 2 - 6 - 2 + 5$$

$$= -1 \checkmark$$
(5)

3.3
$$\frac{4}{3a} + \frac{1}{2b^2} - \frac{8}{5ab}$$

$$\frac{40b^2 + 15a - 48b}{30ab^2} \checkmark \checkmark \checkmark \text{ ONE mark for each correct term of the numerator}$$
ONE mark for the LCD (4)

3.4
$$\frac{xy - x^2y^2}{xy} \div \frac{4 - 4xy}{20}$$

$$= \frac{xy - x^2y^2}{xy} \times \frac{20}{4 - 4xy} \checkmark \text{ division becomes multiplication \& fraction turns}$$

$$= \frac{xy(1 - xy)}{xy} \times \frac{20}{4(1 - xy)} \checkmark \checkmark \text{ for factorisation}$$

$$= 5 \checkmark$$
(4)

[20]

QUESTION 4

4.1
$$11+5x+5 = 6(10-x)$$

$$16+5x = 60-6x \checkmark$$

$$5x+6x = 60-16 \checkmark$$

$$\frac{11x}{11} = \frac{44}{11} \checkmark$$

$$x = 4 \checkmark$$
(4)

4.2
$$x+x+2+x+4=21 \checkmark \checkmark$$
 ONE mark for the uneven numbers / $3x+6=21$ ONE mark for the addition sign and equal to 21 $3x=21-6$ $3x=15 \checkmark$ $x=5 \checkmark$

The three numbers are:

5, 7 and 9
$$\checkmark$$
 If only the three numbers are given, give one mark only (5)

4.3
$$V = \frac{1}{2}\pi r^2 h$$

$$2V = \pi r^2 h \checkmark$$

$$\frac{2V}{\pi h} = r^2 \checkmark$$

$$\therefore r = \sqrt{\frac{2V}{\pi h}} \checkmark$$
(3)

4.4
$$r = \sqrt{\frac{2V}{\pi h}}$$

$$r = \sqrt{\frac{2(9)}{\pi(5)}} \checkmark$$

$$=1,071 \checkmark$$
(2)
[14]

5.1

X	-2	-1	0	1	
у	-3	-1	1	3	
		y-axis√		1	1
		7			y = 2x + 1
		6	+		
		5			
		4 —	/		
		3			
		2 -			
1 \	, ,	1			
-7 -6 -5	-4 -3	-2 -1	1 2	3 4	5 6 7 x-axis√
		<i>f</i> 1 -	1		
		-2 -			
	1	-3 -			
		-4 -			

2 marks for calculating each of the coordinates correctly \checkmark \checkmark in the table

x-intercept between 0 and -1 \checkmark

✓ ONE mark for straight line graph

✓ ONE mark for 1 as y intercept

✓ labelling both axes (6)

5.2 Straight line \checkmark (1)

5.3 5.3.1 (0;-3)✓

 $5.3.2 m = -1 \checkmark$

5.3.3 (2 x 1) (2) [9]

MATHEMATICS N1

QUESTION 6

6.1
$$\hat{A} + \hat{B} = 130^{\circ}$$
 OR $C + 130^{\circ} = 180^{\circ}$ $86^{\circ} + x = 130^{\circ} \checkmark$ $C = 50^{\circ} \checkmark$ $x = 130^{\circ} - 86^{\circ}$ $86^{\circ} + 50^{\circ} + x = 180^{\circ}$ $x = 44^{\circ} \checkmark$ (2)

6.2 6.2.1
$$AF^{2} + AE^{2} = EF^{2}$$

$$AF^{2} + 22,5^{2} = 33^{2} \checkmark \checkmark \text{ for substitution}$$

$$AF^{2} = 582,75$$

$$AF = 24,14 \checkmark$$
(4)

6.2.2
$$(\frac{22,5}{33})(\frac{24,14}{33})$$

$$= \frac{543,15}{1089}$$

$$= \mathbf{0,499} \checkmark$$
OR answer only 3 marks (3)

6.3

[9]

7.1 Area of one tile = 0.415×0.390 OR Area = 415mmx 390mm \checkmark 7.1.1 $= 0.162 \text{ m}^2$ $=161850 \text{mm}^2$

hint Area cannot be converted to meters

7.1.2 Floor area = 4.5×5.5 \checkmark $= 24,75 \text{ m}^2$

7.1.3 Number of tiles required = $\frac{24,75}{0,162}$ = 152,9**✓**

Need 153 tiles ✓

 (3×2) (6)

7.2 8% of R7,80c OR $R7,80 \times 1,08 \checkmark \checkmark = R8,42 \checkmark$

> $= 0.08 \times R7.80 \checkmark$ =0.62

Therefore R7,80c + 0,62

(3) The new price is R8,42c ✓

7.3 $A = 1 \times b$ $=18\times10$ ✓ $= 180 \text{ mm}^2$ (2) [11]

> **TOTAL:** 95